metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.63D14, (C23×C4).5D7, (C22×C28)⋊10C4, (C23×C28).3C2, (C22×C4)⋊7Dic7, (C22×C14).192D4, (C22×C4).407D14, C23.82(C7⋊D4), C7⋊3(C23.34D4), C23.30(C2×Dic7), C14.C42⋊23C2, C22.62(C4○D28), (C23×C14).98C22, C23.302(C22×D7), C14.48(C42⋊C2), (C22×C14).362C23, (C22×C28).483C22, C22.19(C23.D7), C22.49(C22×Dic7), C14.68(C22.D4), C2.4(C23.23D14), (C22×Dic7).65C22, C2.11(C23.21D14), (C2×C28).281(C2×C4), C2.5(C2×C23.D7), (C2×C14).548(C2×D4), C14.69(C2×C22⋊C4), (C2×C4).66(C2×Dic7), C22.86(C2×C7⋊D4), (C2×C14).90(C4○D4), (C2×C23.D7).17C2, (C2×C14).192(C22×C4), (C22×C14).135(C2×C4), (C2×C14).109(C22⋊C4), SmallGroup(448,745)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.63D14
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e14=d, f2=bcd, ab=ba, ac=ca, faf-1=ad=da, ae=ea, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce13 >
Subgroups: 708 in 218 conjugacy classes, 87 normal (13 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, C23, C23, C23, C14, C14, C14, C22⋊C4, C22×C4, C22×C4, C24, Dic7, C28, C2×C14, C2×C14, C2×C14, C2.C42, C2×C22⋊C4, C23×C4, C2×Dic7, C2×C28, C2×C28, C22×C14, C22×C14, C22×C14, C23.34D4, C23.D7, C22×Dic7, C22×C28, C22×C28, C23×C14, C14.C42, C2×C23.D7, C23×C28, C24.63D14
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, C22×C4, C2×D4, C4○D4, Dic7, D14, C2×C22⋊C4, C42⋊C2, C22.D4, C2×Dic7, C7⋊D4, C22×D7, C23.34D4, C23.D7, C4○D28, C22×Dic7, C2×C7⋊D4, C23.21D14, C23.23D14, C2×C23.D7, C24.63D14
(1 67)(2 68)(3 69)(4 70)(5 71)(6 72)(7 73)(8 74)(9 75)(10 76)(11 77)(12 78)(13 79)(14 80)(15 81)(16 82)(17 83)(18 84)(19 57)(20 58)(21 59)(22 60)(23 61)(24 62)(25 63)(26 64)(27 65)(28 66)(29 218)(30 219)(31 220)(32 221)(33 222)(34 223)(35 224)(36 197)(37 198)(38 199)(39 200)(40 201)(41 202)(42 203)(43 204)(44 205)(45 206)(46 207)(47 208)(48 209)(49 210)(50 211)(51 212)(52 213)(53 214)(54 215)(55 216)(56 217)(85 160)(86 161)(87 162)(88 163)(89 164)(90 165)(91 166)(92 167)(93 168)(94 141)(95 142)(96 143)(97 144)(98 145)(99 146)(100 147)(101 148)(102 149)(103 150)(104 151)(105 152)(106 153)(107 154)(108 155)(109 156)(110 157)(111 158)(112 159)(113 171)(114 172)(115 173)(116 174)(117 175)(118 176)(119 177)(120 178)(121 179)(122 180)(123 181)(124 182)(125 183)(126 184)(127 185)(128 186)(129 187)(130 188)(131 189)(132 190)(133 191)(134 192)(135 193)(136 194)(137 195)(138 196)(139 169)(140 170)
(1 88)(2 89)(3 90)(4 91)(5 92)(6 93)(7 94)(8 95)(9 96)(10 97)(11 98)(12 99)(13 100)(14 101)(15 102)(16 103)(17 104)(18 105)(19 106)(20 107)(21 108)(22 109)(23 110)(24 111)(25 112)(26 85)(27 86)(28 87)(29 121)(30 122)(31 123)(32 124)(33 125)(34 126)(35 127)(36 128)(37 129)(38 130)(39 131)(40 132)(41 133)(42 134)(43 135)(44 136)(45 137)(46 138)(47 139)(48 140)(49 113)(50 114)(51 115)(52 116)(53 117)(54 118)(55 119)(56 120)(57 153)(58 154)(59 155)(60 156)(61 157)(62 158)(63 159)(64 160)(65 161)(66 162)(67 163)(68 164)(69 165)(70 166)(71 167)(72 168)(73 141)(74 142)(75 143)(76 144)(77 145)(78 146)(79 147)(80 148)(81 149)(82 150)(83 151)(84 152)(169 208)(170 209)(171 210)(172 211)(173 212)(174 213)(175 214)(176 215)(177 216)(178 217)(179 218)(180 219)(181 220)(182 221)(183 222)(184 223)(185 224)(186 197)(187 198)(188 199)(189 200)(190 201)(191 202)(192 203)(193 204)(194 205)(195 206)(196 207)
(1 163)(2 164)(3 165)(4 166)(5 167)(6 168)(7 141)(8 142)(9 143)(10 144)(11 145)(12 146)(13 147)(14 148)(15 149)(16 150)(17 151)(18 152)(19 153)(20 154)(21 155)(22 156)(23 157)(24 158)(25 159)(26 160)(27 161)(28 162)(29 193)(30 194)(31 195)(32 196)(33 169)(34 170)(35 171)(36 172)(37 173)(38 174)(39 175)(40 176)(41 177)(42 178)(43 179)(44 180)(45 181)(46 182)(47 183)(48 184)(49 185)(50 186)(51 187)(52 188)(53 189)(54 190)(55 191)(56 192)(57 106)(58 107)(59 108)(60 109)(61 110)(62 111)(63 112)(64 85)(65 86)(66 87)(67 88)(68 89)(69 90)(70 91)(71 92)(72 93)(73 94)(74 95)(75 96)(76 97)(77 98)(78 99)(79 100)(80 101)(81 102)(82 103)(83 104)(84 105)(113 224)(114 197)(115 198)(116 199)(117 200)(118 201)(119 202)(120 203)(121 204)(122 205)(123 206)(124 207)(125 208)(126 209)(127 210)(128 211)(129 212)(130 213)(131 214)(132 215)(133 216)(134 217)(135 218)(136 219)(137 220)(138 221)(139 222)(140 223)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)(113 127)(114 128)(115 129)(116 130)(117 131)(118 132)(119 133)(120 134)(121 135)(122 136)(123 137)(124 138)(125 139)(126 140)(141 155)(142 156)(143 157)(144 158)(145 159)(146 160)(147 161)(148 162)(149 163)(150 164)(151 165)(152 166)(153 167)(154 168)(169 183)(170 184)(171 185)(172 186)(173 187)(174 188)(175 189)(176 190)(177 191)(178 192)(179 193)(180 194)(181 195)(182 196)(197 211)(198 212)(199 213)(200 214)(201 215)(202 216)(203 217)(204 218)(205 219)(206 220)(207 221)(208 222)(209 223)(210 224)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 56 81 217)(2 177 82 119)(3 54 83 215)(4 175 84 117)(5 52 57 213)(6 173 58 115)(7 50 59 211)(8 171 60 113)(9 48 61 209)(10 169 62 139)(11 46 63 207)(12 195 64 137)(13 44 65 205)(14 193 66 135)(15 42 67 203)(16 191 68 133)(17 40 69 201)(18 189 70 131)(19 38 71 199)(20 187 72 129)(21 36 73 197)(22 185 74 127)(23 34 75 223)(24 183 76 125)(25 32 77 221)(26 181 78 123)(27 30 79 219)(28 179 80 121)(29 87 218 148)(31 85 220 146)(33 111 222 144)(35 109 224 142)(37 107 198 168)(39 105 200 166)(41 103 202 164)(43 101 204 162)(45 99 206 160)(47 97 208 158)(49 95 210 156)(51 93 212 154)(53 91 214 152)(55 89 216 150)(86 122 147 180)(88 120 149 178)(90 118 151 176)(92 116 153 174)(94 114 155 172)(96 140 157 170)(98 138 159 196)(100 136 161 194)(102 134 163 192)(104 132 165 190)(106 130 167 188)(108 128 141 186)(110 126 143 184)(112 124 145 182)
G:=sub<Sym(224)| (1,67)(2,68)(3,69)(4,70)(5,71)(6,72)(7,73)(8,74)(9,75)(10,76)(11,77)(12,78)(13,79)(14,80)(15,81)(16,82)(17,83)(18,84)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,63)(26,64)(27,65)(28,66)(29,218)(30,219)(31,220)(32,221)(33,222)(34,223)(35,224)(36,197)(37,198)(38,199)(39,200)(40,201)(41,202)(42,203)(43,204)(44,205)(45,206)(46,207)(47,208)(48,209)(49,210)(50,211)(51,212)(52,213)(53,214)(54,215)(55,216)(56,217)(85,160)(86,161)(87,162)(88,163)(89,164)(90,165)(91,166)(92,167)(93,168)(94,141)(95,142)(96,143)(97,144)(98,145)(99,146)(100,147)(101,148)(102,149)(103,150)(104,151)(105,152)(106,153)(107,154)(108,155)(109,156)(110,157)(111,158)(112,159)(113,171)(114,172)(115,173)(116,174)(117,175)(118,176)(119,177)(120,178)(121,179)(122,180)(123,181)(124,182)(125,183)(126,184)(127,185)(128,186)(129,187)(130,188)(131,189)(132,190)(133,191)(134,192)(135,193)(136,194)(137,195)(138,196)(139,169)(140,170), (1,88)(2,89)(3,90)(4,91)(5,92)(6,93)(7,94)(8,95)(9,96)(10,97)(11,98)(12,99)(13,100)(14,101)(15,102)(16,103)(17,104)(18,105)(19,106)(20,107)(21,108)(22,109)(23,110)(24,111)(25,112)(26,85)(27,86)(28,87)(29,121)(30,122)(31,123)(32,124)(33,125)(34,126)(35,127)(36,128)(37,129)(38,130)(39,131)(40,132)(41,133)(42,134)(43,135)(44,136)(45,137)(46,138)(47,139)(48,140)(49,113)(50,114)(51,115)(52,116)(53,117)(54,118)(55,119)(56,120)(57,153)(58,154)(59,155)(60,156)(61,157)(62,158)(63,159)(64,160)(65,161)(66,162)(67,163)(68,164)(69,165)(70,166)(71,167)(72,168)(73,141)(74,142)(75,143)(76,144)(77,145)(78,146)(79,147)(80,148)(81,149)(82,150)(83,151)(84,152)(169,208)(170,209)(171,210)(172,211)(173,212)(174,213)(175,214)(176,215)(177,216)(178,217)(179,218)(180,219)(181,220)(182,221)(183,222)(184,223)(185,224)(186,197)(187,198)(188,199)(189,200)(190,201)(191,202)(192,203)(193,204)(194,205)(195,206)(196,207), (1,163)(2,164)(3,165)(4,166)(5,167)(6,168)(7,141)(8,142)(9,143)(10,144)(11,145)(12,146)(13,147)(14,148)(15,149)(16,150)(17,151)(18,152)(19,153)(20,154)(21,155)(22,156)(23,157)(24,158)(25,159)(26,160)(27,161)(28,162)(29,193)(30,194)(31,195)(32,196)(33,169)(34,170)(35,171)(36,172)(37,173)(38,174)(39,175)(40,176)(41,177)(42,178)(43,179)(44,180)(45,181)(46,182)(47,183)(48,184)(49,185)(50,186)(51,187)(52,188)(53,189)(54,190)(55,191)(56,192)(57,106)(58,107)(59,108)(60,109)(61,110)(62,111)(63,112)(64,85)(65,86)(66,87)(67,88)(68,89)(69,90)(70,91)(71,92)(72,93)(73,94)(74,95)(75,96)(76,97)(77,98)(78,99)(79,100)(80,101)(81,102)(82,103)(83,104)(84,105)(113,224)(114,197)(115,198)(116,199)(117,200)(118,201)(119,202)(120,203)(121,204)(122,205)(123,206)(124,207)(125,208)(126,209)(127,210)(128,211)(129,212)(130,213)(131,214)(132,215)(133,216)(134,217)(135,218)(136,219)(137,220)(138,221)(139,222)(140,223), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,56,81,217)(2,177,82,119)(3,54,83,215)(4,175,84,117)(5,52,57,213)(6,173,58,115)(7,50,59,211)(8,171,60,113)(9,48,61,209)(10,169,62,139)(11,46,63,207)(12,195,64,137)(13,44,65,205)(14,193,66,135)(15,42,67,203)(16,191,68,133)(17,40,69,201)(18,189,70,131)(19,38,71,199)(20,187,72,129)(21,36,73,197)(22,185,74,127)(23,34,75,223)(24,183,76,125)(25,32,77,221)(26,181,78,123)(27,30,79,219)(28,179,80,121)(29,87,218,148)(31,85,220,146)(33,111,222,144)(35,109,224,142)(37,107,198,168)(39,105,200,166)(41,103,202,164)(43,101,204,162)(45,99,206,160)(47,97,208,158)(49,95,210,156)(51,93,212,154)(53,91,214,152)(55,89,216,150)(86,122,147,180)(88,120,149,178)(90,118,151,176)(92,116,153,174)(94,114,155,172)(96,140,157,170)(98,138,159,196)(100,136,161,194)(102,134,163,192)(104,132,165,190)(106,130,167,188)(108,128,141,186)(110,126,143,184)(112,124,145,182)>;
G:=Group( (1,67)(2,68)(3,69)(4,70)(5,71)(6,72)(7,73)(8,74)(9,75)(10,76)(11,77)(12,78)(13,79)(14,80)(15,81)(16,82)(17,83)(18,84)(19,57)(20,58)(21,59)(22,60)(23,61)(24,62)(25,63)(26,64)(27,65)(28,66)(29,218)(30,219)(31,220)(32,221)(33,222)(34,223)(35,224)(36,197)(37,198)(38,199)(39,200)(40,201)(41,202)(42,203)(43,204)(44,205)(45,206)(46,207)(47,208)(48,209)(49,210)(50,211)(51,212)(52,213)(53,214)(54,215)(55,216)(56,217)(85,160)(86,161)(87,162)(88,163)(89,164)(90,165)(91,166)(92,167)(93,168)(94,141)(95,142)(96,143)(97,144)(98,145)(99,146)(100,147)(101,148)(102,149)(103,150)(104,151)(105,152)(106,153)(107,154)(108,155)(109,156)(110,157)(111,158)(112,159)(113,171)(114,172)(115,173)(116,174)(117,175)(118,176)(119,177)(120,178)(121,179)(122,180)(123,181)(124,182)(125,183)(126,184)(127,185)(128,186)(129,187)(130,188)(131,189)(132,190)(133,191)(134,192)(135,193)(136,194)(137,195)(138,196)(139,169)(140,170), (1,88)(2,89)(3,90)(4,91)(5,92)(6,93)(7,94)(8,95)(9,96)(10,97)(11,98)(12,99)(13,100)(14,101)(15,102)(16,103)(17,104)(18,105)(19,106)(20,107)(21,108)(22,109)(23,110)(24,111)(25,112)(26,85)(27,86)(28,87)(29,121)(30,122)(31,123)(32,124)(33,125)(34,126)(35,127)(36,128)(37,129)(38,130)(39,131)(40,132)(41,133)(42,134)(43,135)(44,136)(45,137)(46,138)(47,139)(48,140)(49,113)(50,114)(51,115)(52,116)(53,117)(54,118)(55,119)(56,120)(57,153)(58,154)(59,155)(60,156)(61,157)(62,158)(63,159)(64,160)(65,161)(66,162)(67,163)(68,164)(69,165)(70,166)(71,167)(72,168)(73,141)(74,142)(75,143)(76,144)(77,145)(78,146)(79,147)(80,148)(81,149)(82,150)(83,151)(84,152)(169,208)(170,209)(171,210)(172,211)(173,212)(174,213)(175,214)(176,215)(177,216)(178,217)(179,218)(180,219)(181,220)(182,221)(183,222)(184,223)(185,224)(186,197)(187,198)(188,199)(189,200)(190,201)(191,202)(192,203)(193,204)(194,205)(195,206)(196,207), (1,163)(2,164)(3,165)(4,166)(5,167)(6,168)(7,141)(8,142)(9,143)(10,144)(11,145)(12,146)(13,147)(14,148)(15,149)(16,150)(17,151)(18,152)(19,153)(20,154)(21,155)(22,156)(23,157)(24,158)(25,159)(26,160)(27,161)(28,162)(29,193)(30,194)(31,195)(32,196)(33,169)(34,170)(35,171)(36,172)(37,173)(38,174)(39,175)(40,176)(41,177)(42,178)(43,179)(44,180)(45,181)(46,182)(47,183)(48,184)(49,185)(50,186)(51,187)(52,188)(53,189)(54,190)(55,191)(56,192)(57,106)(58,107)(59,108)(60,109)(61,110)(62,111)(63,112)(64,85)(65,86)(66,87)(67,88)(68,89)(69,90)(70,91)(71,92)(72,93)(73,94)(74,95)(75,96)(76,97)(77,98)(78,99)(79,100)(80,101)(81,102)(82,103)(83,104)(84,105)(113,224)(114,197)(115,198)(116,199)(117,200)(118,201)(119,202)(120,203)(121,204)(122,205)(123,206)(124,207)(125,208)(126,209)(127,210)(128,211)(129,212)(130,213)(131,214)(132,215)(133,216)(134,217)(135,218)(136,219)(137,220)(138,221)(139,222)(140,223), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112)(113,127)(114,128)(115,129)(116,130)(117,131)(118,132)(119,133)(120,134)(121,135)(122,136)(123,137)(124,138)(125,139)(126,140)(141,155)(142,156)(143,157)(144,158)(145,159)(146,160)(147,161)(148,162)(149,163)(150,164)(151,165)(152,166)(153,167)(154,168)(169,183)(170,184)(171,185)(172,186)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(197,211)(198,212)(199,213)(200,214)(201,215)(202,216)(203,217)(204,218)(205,219)(206,220)(207,221)(208,222)(209,223)(210,224), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,56,81,217)(2,177,82,119)(3,54,83,215)(4,175,84,117)(5,52,57,213)(6,173,58,115)(7,50,59,211)(8,171,60,113)(9,48,61,209)(10,169,62,139)(11,46,63,207)(12,195,64,137)(13,44,65,205)(14,193,66,135)(15,42,67,203)(16,191,68,133)(17,40,69,201)(18,189,70,131)(19,38,71,199)(20,187,72,129)(21,36,73,197)(22,185,74,127)(23,34,75,223)(24,183,76,125)(25,32,77,221)(26,181,78,123)(27,30,79,219)(28,179,80,121)(29,87,218,148)(31,85,220,146)(33,111,222,144)(35,109,224,142)(37,107,198,168)(39,105,200,166)(41,103,202,164)(43,101,204,162)(45,99,206,160)(47,97,208,158)(49,95,210,156)(51,93,212,154)(53,91,214,152)(55,89,216,150)(86,122,147,180)(88,120,149,178)(90,118,151,176)(92,116,153,174)(94,114,155,172)(96,140,157,170)(98,138,159,196)(100,136,161,194)(102,134,163,192)(104,132,165,190)(106,130,167,188)(108,128,141,186)(110,126,143,184)(112,124,145,182) );
G=PermutationGroup([[(1,67),(2,68),(3,69),(4,70),(5,71),(6,72),(7,73),(8,74),(9,75),(10,76),(11,77),(12,78),(13,79),(14,80),(15,81),(16,82),(17,83),(18,84),(19,57),(20,58),(21,59),(22,60),(23,61),(24,62),(25,63),(26,64),(27,65),(28,66),(29,218),(30,219),(31,220),(32,221),(33,222),(34,223),(35,224),(36,197),(37,198),(38,199),(39,200),(40,201),(41,202),(42,203),(43,204),(44,205),(45,206),(46,207),(47,208),(48,209),(49,210),(50,211),(51,212),(52,213),(53,214),(54,215),(55,216),(56,217),(85,160),(86,161),(87,162),(88,163),(89,164),(90,165),(91,166),(92,167),(93,168),(94,141),(95,142),(96,143),(97,144),(98,145),(99,146),(100,147),(101,148),(102,149),(103,150),(104,151),(105,152),(106,153),(107,154),(108,155),(109,156),(110,157),(111,158),(112,159),(113,171),(114,172),(115,173),(116,174),(117,175),(118,176),(119,177),(120,178),(121,179),(122,180),(123,181),(124,182),(125,183),(126,184),(127,185),(128,186),(129,187),(130,188),(131,189),(132,190),(133,191),(134,192),(135,193),(136,194),(137,195),(138,196),(139,169),(140,170)], [(1,88),(2,89),(3,90),(4,91),(5,92),(6,93),(7,94),(8,95),(9,96),(10,97),(11,98),(12,99),(13,100),(14,101),(15,102),(16,103),(17,104),(18,105),(19,106),(20,107),(21,108),(22,109),(23,110),(24,111),(25,112),(26,85),(27,86),(28,87),(29,121),(30,122),(31,123),(32,124),(33,125),(34,126),(35,127),(36,128),(37,129),(38,130),(39,131),(40,132),(41,133),(42,134),(43,135),(44,136),(45,137),(46,138),(47,139),(48,140),(49,113),(50,114),(51,115),(52,116),(53,117),(54,118),(55,119),(56,120),(57,153),(58,154),(59,155),(60,156),(61,157),(62,158),(63,159),(64,160),(65,161),(66,162),(67,163),(68,164),(69,165),(70,166),(71,167),(72,168),(73,141),(74,142),(75,143),(76,144),(77,145),(78,146),(79,147),(80,148),(81,149),(82,150),(83,151),(84,152),(169,208),(170,209),(171,210),(172,211),(173,212),(174,213),(175,214),(176,215),(177,216),(178,217),(179,218),(180,219),(181,220),(182,221),(183,222),(184,223),(185,224),(186,197),(187,198),(188,199),(189,200),(190,201),(191,202),(192,203),(193,204),(194,205),(195,206),(196,207)], [(1,163),(2,164),(3,165),(4,166),(5,167),(6,168),(7,141),(8,142),(9,143),(10,144),(11,145),(12,146),(13,147),(14,148),(15,149),(16,150),(17,151),(18,152),(19,153),(20,154),(21,155),(22,156),(23,157),(24,158),(25,159),(26,160),(27,161),(28,162),(29,193),(30,194),(31,195),(32,196),(33,169),(34,170),(35,171),(36,172),(37,173),(38,174),(39,175),(40,176),(41,177),(42,178),(43,179),(44,180),(45,181),(46,182),(47,183),(48,184),(49,185),(50,186),(51,187),(52,188),(53,189),(54,190),(55,191),(56,192),(57,106),(58,107),(59,108),(60,109),(61,110),(62,111),(63,112),(64,85),(65,86),(66,87),(67,88),(68,89),(69,90),(70,91),(71,92),(72,93),(73,94),(74,95),(75,96),(76,97),(77,98),(78,99),(79,100),(80,101),(81,102),(82,103),(83,104),(84,105),(113,224),(114,197),(115,198),(116,199),(117,200),(118,201),(119,202),(120,203),(121,204),(122,205),(123,206),(124,207),(125,208),(126,209),(127,210),(128,211),(129,212),(130,213),(131,214),(132,215),(133,216),(134,217),(135,218),(136,219),(137,220),(138,221),(139,222),(140,223)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112),(113,127),(114,128),(115,129),(116,130),(117,131),(118,132),(119,133),(120,134),(121,135),(122,136),(123,137),(124,138),(125,139),(126,140),(141,155),(142,156),(143,157),(144,158),(145,159),(146,160),(147,161),(148,162),(149,163),(150,164),(151,165),(152,166),(153,167),(154,168),(169,183),(170,184),(171,185),(172,186),(173,187),(174,188),(175,189),(176,190),(177,191),(178,192),(179,193),(180,194),(181,195),(182,196),(197,211),(198,212),(199,213),(200,214),(201,215),(202,216),(203,217),(204,218),(205,219),(206,220),(207,221),(208,222),(209,223),(210,224)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,56,81,217),(2,177,82,119),(3,54,83,215),(4,175,84,117),(5,52,57,213),(6,173,58,115),(7,50,59,211),(8,171,60,113),(9,48,61,209),(10,169,62,139),(11,46,63,207),(12,195,64,137),(13,44,65,205),(14,193,66,135),(15,42,67,203),(16,191,68,133),(17,40,69,201),(18,189,70,131),(19,38,71,199),(20,187,72,129),(21,36,73,197),(22,185,74,127),(23,34,75,223),(24,183,76,125),(25,32,77,221),(26,181,78,123),(27,30,79,219),(28,179,80,121),(29,87,218,148),(31,85,220,146),(33,111,222,144),(35,109,224,142),(37,107,198,168),(39,105,200,166),(41,103,202,164),(43,101,204,162),(45,99,206,160),(47,97,208,158),(49,95,210,156),(51,93,212,154),(53,91,214,152),(55,89,216,150),(86,122,147,180),(88,120,149,178),(90,118,151,176),(92,116,153,174),(94,114,155,172),(96,140,157,170),(98,138,159,196),(100,136,161,194),(102,134,163,192),(104,132,165,190),(106,130,167,188),(108,128,141,186),(110,126,143,184),(112,124,145,182)]])
124 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4H | 4I | ··· | 4P | 7A | 7B | 7C | 14A | ··· | 14AS | 28A | ··· | 28AV |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 28 | ··· | 28 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
124 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | - | + | + | ||||
image | C1 | C2 | C2 | C2 | C4 | D4 | D7 | C4○D4 | Dic7 | D14 | D14 | C7⋊D4 | C4○D28 |
kernel | C24.63D14 | C14.C42 | C2×C23.D7 | C23×C28 | C22×C28 | C22×C14 | C23×C4 | C2×C14 | C22×C4 | C22×C4 | C24 | C23 | C22 |
# reps | 1 | 4 | 2 | 1 | 8 | 4 | 3 | 8 | 12 | 6 | 3 | 24 | 48 |
Matrix representation of C24.63D14 ►in GL5(𝔽29)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 27 |
0 | 0 | 0 | 0 | 28 |
28 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 28 |
28 | 0 | 0 | 0 | 0 |
0 | 8 | 28 | 0 | 0 |
0 | 13 | 20 | 0 | 0 |
0 | 0 | 0 | 2 | 12 |
0 | 0 | 0 | 0 | 14 |
12 | 0 | 0 | 0 | 0 |
0 | 8 | 12 | 0 | 0 |
0 | 2 | 21 | 0 | 0 |
0 | 0 | 0 | 9 | 7 |
0 | 0 | 0 | 9 | 20 |
G:=sub<GL(5,GF(29))| [1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,27,28],[28,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,28,0,0,0,0,0,28,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,28,0,0,0,0,0,28],[28,0,0,0,0,0,8,13,0,0,0,28,20,0,0,0,0,0,2,0,0,0,0,12,14],[12,0,0,0,0,0,8,2,0,0,0,12,21,0,0,0,0,0,9,9,0,0,0,7,20] >;
C24.63D14 in GAP, Magma, Sage, TeX
C_2^4._{63}D_{14}
% in TeX
G:=Group("C2^4.63D14");
// GroupNames label
G:=SmallGroup(448,745);
// by ID
G=gap.SmallGroup(448,745);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,56,477,422,184,18822]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^14=d,f^2=b*c*d,a*b=b*a,a*c=c*a,f*a*f^-1=a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^13>;
// generators/relations